Noether normalization guided by monomial cone decompositions
نویسنده
چکیده
This paper explains the relevance of partitioning the set of standard monomials into cones for constructing a Noether normalization for an ideal in a polynomial ring. Such a decomposition of the complement of the corresponding initial ideal in the set of all monomials – also known as a Stanley decomposition – is constructed in the context of Janet bases, in order to come up with sparse coordinate changes which achieve Noether normal position for the given ideal.
منابع مشابه
Normalization of monomial ideals and Hilbert functions
We study the normalization of a monomial ideal and show how to compute its Hilbert function if the ideal is zero dimensional. A positive lower bound for the second coefficient of the Hilbert polynomial is shown. 1 Normalization of monomial ideals In the sequel we use [3, 11] as references for standard terminology and notation on commutative algebra and polyhedral cones. We denote the set of non...
متن کاملRees cones and monomial rings of matroids
Using linear algebra methods we study certain algebraic properties of monomial rings and matroids. Let I be a monomial ideal in a polynomial ring over an arbitrary field. If the Rees cone of I is quasi-ideal, we express the normalization of the Rees algebra of I in terms of an Ehrhart ring. We introduce the basis Rees cone of a matroid (or a polymatroid) and study their facets. Some application...
متن کاملRees cones of matroids
Let I be a monomial ideal in a polynomial ring over a field k. If the Rees cone of I is quasi-ideal, we express the normalization of the Rees algebra of I in terms of an Ehrhart ring. We introduce the basis Rees cone of a matroid and study their facets. Then an application to Rees algebras is presented.
متن کاملNegative solutions to three-dimensional monomial Noether problem
Three-dimensional monomial Noether problem can have negative solutions for 8 groups by the suitable choice of the coefficients. We find the necessary and sufficient condition for the coefficients to have a negative solution. The results are obtained by two criteria of irrationality using Galois cohomology.
متن کاملStanley Decompositions and Partionable Simplicial Complexes
We study Stanley decompositions and show that Stanley’s conjecture on Stanley decompositions implies his conjecture on partitionable Cohen-Macaulay simplicial complexes. We also prove these conjectures for all Cohen-Macaulay monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimension 3.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 44 شماره
صفحات -
تاریخ انتشار 2009